);

Contoh soal persamaan dan pertidaksamaan rasional

Pada postingan ini kita membahas contoh soal persamaan dan pertidaksamaan rasional dan penyelesaiannya. Persamaan rasional dan pertidaksamaan rasional merupakan salah satu materi pelajaran matematika SMA kelas 10 semester 1.

Persamaan rasional didefinisikan sebagai persamaan suatu pecahan dengan satu atau lebih variabel (x) pada pembilang atau penyebutnya. Sedangkan pertidaksamaan rasional adalah persamaan pecahan dengan notasi kurang dari, lebih dari, kurang dari sama dengan dan lebih dari sama dengan.

Untuk bisa menjawab soal persamaan rasional, kemampuan yang mesti kita miliki adalah perkalian silang dan pindah ruas bilangan. Seperti kita ketahui ketika kita pindah ruas bilangan positif dari kanan ke kiri maka tanda positif menjadi negatif dan sebaliknya.

Sedangkan pemecahan soal pertidaksamaan rasional dapat dilakukan dengan langkah-langkah dibawah ini:

  1. Tentukan syarat pertidaksamaan.
  2. Tentukan pembuat nol
  3. Buat garis bilangan
  4. Tentukan interval yang memenuhi berdasarkan garis bilangan

Contoh soal persamaan rasional

Contoh soal 1

Tentukan nilai x yang memenuhi persamaan rasional
x – 1
2
3x
4
= 0

Penyelesaian soal

Untuk menjawab soal ini kita gunakan metode pindah ruas dan kali silang. Ketika memindahkan angka atau variabel dari satu ruas ke ruas lainnya kita ganda negatif menjadi positif atau sebaliknya. Jadi jawaban soal diatas sebagai berikut:

x – 1
2
=
3x
4

→ 4 (x – 1) = 2. 3x
→ 4x – 4 = 6x
→ 4x – 6x = 4
→ -2x = 4
→ x =
-4
2
= -2

Contoh soal 2

Tentukan nilai x yang memenuhi persamaan rasional dibawah ini.

1 .
x + 1
x – 2
= 2
2.
2x – 4
x + 1
= 4

Penyelesaian soal

Cara menjawab soal 1 sebagai berikut:

  • x + 1 = 2 (x – 2) atau x + 1 = 2x – 4
  • x – 2x = -4 – 1
  • -x = -5
  • x = 5

Cara menjawab soal 2 sebagai berikut:

  • 2x – 4 = 4 (x + 1)
  • 2x – 4 = 4x + 4
  • 2x – 4x = 4 + 4
  • -2x = 8
  • x = 8/-2 = -4

Contoh soal 3

Tentukan nilai x yang memenuhi persamaan rasional berikut.

x – 3
x – 1
+
x – 2
x – 1
= 4

Penyelesaian soal

Cara menjawab soal nomor 3 kita jumlahkan ruas kiri sehingga diperoleh:

x – 3 + (x – 2)
x – 1
= 4
2x – 5
x – 1
= 4
→ 2x – 5 = 4 (x – 1)
→ 2x – 5 = 4x – 4
→ 4x – 2x = -5 + 4
→ 2x = -1
→ x = -1/2

Contoh soal pertidaksamaan rasional

Contoh soal 1

Tentukan himpunan penyelesaian dari pertidaksamaan rasional dari
x – 4
x – 1
≥ 0

Penyelesaian soal

Untuk menjawab soal ini tentukan terlebih dahulu syarat pertidaksamaan yaitu x – 1 ≠ 0 atau x ≠ 1.

Selanjutnya kita buat pembuat nol sehingga diperoleh hasil sebagai berikut:

  • x – 4 = 0 maka x = 4
  • x – 1 = 0 maka x = 1

Kemudian kita buat garis bilangag sebagai berikut:

Garis bilangan pertidaksamaan rasional

Untuk menentukan tanda + atau – pada garis bilangan diatas kita ambil satu angka yang lebih kecil dari 1 (misalkan 0). Angka 0 kita subtitusi ke (x – 4)/(x – 1) maka didapat (0 – 4)/(0 – 1) = + 4. Jadi tanda garis bilangan di sebelah kiri 1 adalah + lalu kita buat selang seling untuk tanda garis bilangan selanjutnya.

Karena notasi pertidaksamaan lebih dari sama dengan maka himpunan penyelesaian (x – 4)/(x – 1) terletak pada garis bilangan bertanda + atau pada interval x < 1 atau x ≥ 4.


Contoh soal 2

Tentukan himpunan penyelesaian dari pertidaksamaan rasional
2x + 4
x – 2
≺ 0

Penyelesaian soal

Syarat pertidaksamaan soal nomor 2 adalah x – 2 ≠ 0 atau x ≠ 2. Kemudian kita buat pembuat nol sehingga diperoleh:

  • 2x + 4 = 0 maka x = -2
  • x – 2 = 0 maka x = 2
Garis bilangan rasional

Karena notasi pertidaksamaan soal ini adalah kurang dari maka interval himpunan penyelesaian berada di tanda negatif atau -2 < x < 2.

Contoh soal 3

Tentukan himpunan penyelesaian dari pertidaksamaan rasional
x2 – 4x + 4
x + 1
≺ 0

Penyelesaian soal

Pembilang pada soal diatas kita faktorkan sehingga bentuk soal menjadi:

(x – 2) (x – 2)
x + 1

Syarat yang berlaku pertidaksamaan diatas adalah adalah x + 1 ≠ 0 atau x ≠ -1.

Selanjutnya kita tentukan pembuat nol sebagai berikut:

  • (x – 2) (x – 2) = 0 maka diperoleh x = 2.
  • x + 1 = 0 maka x = – 1

Selanjutnya kita buat garis bilangan sebagai berikut:

  • Untuk x > 2 kita ambil angka 3 lalu subtitusi ke x2 – 4x + 4/x + 1 maka diperoleh 32 – 4 . 3 + 4/3 + 1 = + 1/4. Jadi tanda garis bilangan setelah 2 adalah positif.
  • Untuk interval -1 < x < 2 kita angka nol lalu subtitusi seperti poin diatas sehingga didapat 02 – 4 . 0 + 4/0 + 1) = + 4. Jadi tanda garis bilangan diantara – 1 hingga 2 adalah negatif.
  • Untuk interval x < -1 kita ambil angka -2 lalu subtitusi seperti 2 poin diatas maka hasilnya – 8. Jadi tanda garis bilangan sebelum -1 adalah negatif. Jika digambarkan seperti dibawah ini.
Garis bilangan pertidaksamaan rasional 3

Jadi interval yang memenuhi adalah x < – 1.

(Visited 3.210 times)

6 tanggapan untuk “Contoh soal persamaan dan pertidaksamaan rasional

  • Oktober 9, 2019 pada 12:25 pm
    Permalink

    penjelasan selang contoh nomor 3 pertidaksamaan rasional salah
    terimakasih

    • Oktober 16, 2019 pada 2:50 pm
      Permalink

      Bener kok kan x=2 nya ada dua jadi + + – (dari kanan)

  • Oktober 18, 2019 pada 2:10 am
    Permalink

    tadik rinci

  • November 3, 2019 pada 1:52 pm
    Permalink

    terimakasih atas pembahasannya.. 🙂

    • November 3, 2019 pada 3:59 pm
      Permalink

      Terima kasih juga atas kunjungannya

Komentar ditutup.

You cannot copy content of this page