Contoh soal operasi bentuk aljabar serta pembahasan
Postingan ini membahas contoh soal operasi bentuk aljabar yang disertai pembahasannya atau penyelesaiannya. Contoh bentuk aljabar adalah 2x, 3y, 2a, 3, b dan lainnya. Angka 2 atau 3 disebut koefisien sedangkan x, y, a, b disebut variabel atau peubah. Untuk lebih jelasnya perhatikan contoh soal dan pembahasan dibawah ini.
Contoh soal 1 (UN 2019)
Bentuk sederhana dari 4x + 12y – 10 z – 8x + 5y – 7z adalah …
A. -12x + 12y – 3z
B. -4x + 17y -17z
C. 4x + 7y -17z
D. 12x + 12y + 17z
Pembahasan / penyelesaian soal
Untuk menjawab soal ini kita jumlahkan/kurangkan suku dengan variabel yang sama (x dengan x, y dengan dan z dengan z)
- (4x – 8x) + (12y + 5y) – 10z – 7z
- = -4x + 17y – 17z
Soal ini jawabannya B.
Contoh soal 2 (UN 2018)
Bentuk sederhana dari 5 ab + 4 bc – 3 ac – 2 ac – 8 bc – ab adalah…
A. 4 ab – 4 bc – 5 ac
B. 4 ab + 2 bc – 11 ac
C. 6 ab + 2 bc – 5 ac
D. 6 ab – 4bc + 5 ac
Pembahasan / penyelesaian soal
Cara menjaawab soal ini sebagai berikut:
- (5 ab – ab) + (4 bc – 8 bc) – 3 ac – 2 ac
- = 4 ab – 4 bc – 5 ac
Soal ini jawabannya A.
Contoh soal 3 (UN 2017)
Bentuk sederhana dari 5x2 – 2xy – 8y2 – 6x2 – xy + 3y2 adalah …
A. -x2 – 3xy + 5y2
B. -x2 – 3xy – 5y2
C. x2 + xy -5y2
D.x2 + xy + 5y2
Pembahasan / penyelesaian soal
Cara menjawab soal ini sebagai berikut:
- (5x2 – 6x2) – 2xy – xy – 8y2 + 3y2
- = -x2 – 3xy – 5y2
Soal ini jawabannya B.
Contoh soal 4 (UN 2018)
Jika 2(3x – 1) + 5 = 4(6x + 7) – 7 mempunyai penyelesaian x = n, berapakah nilai 10n + 12?
A. 32
B. 22
C. 2
D. -2
Pembahasan / penyelesaian soal
Cara menjawab soal ini sebagai berikut:
- 6x – 2 + 5 = 24x + 28 – 7
- 6x – 24x = 28 – 7 + 2 – 5
- – 18x = 18
- x = – 18/18 = – 1
Jadi nilai 10n + 12 = 10 . (-1) + 12 = – 10 + 12 = 2. Soal ini jawabannya C.
Contoh soal 5 (UN 2018)
Jika k merupakan penyelesaian 2(3x – 5) + 3 = 3 (4x + 2) – 1, maka nilai 3k + 5 sama dengan …
A. 2
B. 1
C. – 1
D. -2
Pembahasan / penyelesaian soal
Cara menjawab soal ini sebagai berikut:
- 6x – 10 + 3 = 12x + 6 – 1
- 6x – 12x = 6 – 1 + 10 – 3
- -6x = 12
- x = – 12/6 = -2
Jadi nilai 3k + 5 = 3 (-2) + 5 = -6 + 5 = -1. Soal ini jawabannya C.
Contoh soal 6
Jika 2(3x – 2y) dijumlahkan dengan 3(x + 3y) maka hasilnya adalah…
A. 9x – 5y
B. 9x + 5y
C. 3x + 4y
D. 3x – 4y
Pembahasan / penyelesaian soal
Cara menjawab soal ini sebagai berikut:
- 2(3x – 2y) + 3(x + 3y)
- = 6x – 4y + 3x + 9y
- = 9x + 5y
Soal ini jawabannya B.
Contoh soal 7
Jika a = 2, b = -4, c = -5 maka nilai dari 3a – 2b + c = …
A. 19
B. 9
C. 3
D. -7
Pembahasan penyelesaian soal
Cara menjawab soal ini sebagai berikut:
- 3 (2) – 2 (-4) + (-5)
- = 6 + 8 – 5 = 9
Soal ini jawabannya B.
Contoh soal 8
Jika A = -12x – 9y dan B = 4x + 6y maka A – B adalah…
A. – 8x – 3y
B. -8x – 15y
C. -16x – 3y
D. -16x – 15y
Pembahasan / penyelesaian soal
- A – B = (-12x – 9y) – (4x + 6y)
- A – B = -12x – 9y – 4x – 6y
- A – B = -16x – 15y
Soal ini jawabannya C.
Contoh soal 9
Sebuah persegi panjang berukuran panjang (5x – 2) cm dan lebar (4x – 7) cm. Luas persegi panjang tersebut adalah… cm2
A. 20x2 – 27x + 14
B. 20x2 – 43x + 14
C. 20x2 – 27x – 14
D. 20x2 – 43x – 14
Pembahasan / penyelesaian soal
Cara menjawab soal ini sebagai berikut:
- L = Panjang . lebar
- L = (5x – 2) . (4x – 7)
- L = 20x2 – 35x – 8x + 14
- L = 20x2 – 43x + 14
Soal ini jawabannya B.
Contoh soal 10 (UN 2017)
Taman bunga pak Rahman berbentuk persegi panjang dengan ukuran panjang diagonalnya (3x + 15) meter dan (5x + 5) meter. Panjang diagonal taman bunga tersebut adalah…
A. 10 m
B. 25 m
C. 30 m
D. 55 m
Pembahasan / penyelesaian soal
- 3x + 15 = 5x + 5
- 3x – 5x = 5 – 15
- -2x = – 10
- x = 10/2 = 5 meter
Subtitusi x = 5 meter ke persamaan (3x + 15) sehingga hasilnya = 3 . 5 + 15 = 15 + 15 = 30 meter. Jadi soal ini jawabannya C.