Lompat ke konten

Selesaikanlah setiap sistem persamaan berikut

(soal 1) Selesaikanlah setiap sistem persamaan berikut.

Selesaikanlah setiap sistem persamaan berikut
(Soal 1) Selesaikanlah setiap sistem persamaan berikut.

Pembahasan

Nomor (1)

  • 3x – y = 2
  • x + y = 6
  • ____________+
  • 4x = 8
  • x = \frac {8} {4} = 2
  • Subtitusi x = 2 ke persamaan x + y = 6
  • 2 + y = 6
  • y = 6 – 2 = 4
  • Jadi jawabannya: (2, 4)

Nomor (2)

  • x + 4y = 9
  • x + y = 3
  • ___________ –
  • 3y = 6
  • y = \frac {6} {3} = 2
  • Subtitusi y = 2 ke persamaan x + y = 3
  • x + 2 = 3
  • x = 3 – 2 = 1
  • Jadi jawabannya: (1, 2)

Nomor (3)

  • 3x – 2y = -13
  • -3x + 4y = 23
  • _______________ +
  • 2y = 10
  • y = \frac {10} {2} = 5
  • Subtitusi y = 5 ke persamaan 3x – 2y = -13
  • 3x – 2 . 5 = -13
  • 3x – 10 = -13
  • 3x = -13 + 10 = -3
  • x = \frac {-3} {3} = -1
  • Jadi jawabannya: (-1, 5)

Nomor (4)

  • 2x – y = -4
  • x – y = -1
  • ____________-
  • x = -3
  • Subtitusi x = -3 ke persamaan x – y = -1
  • -3 – y = -1
  • y = -3 + 1 = -2
  • Jadi jawabannya: (-3, -2)

(soal 2) Selesaikanlah setiap sistem persamaan berikut.

Selesaikanlah setiap sistem persamaan berikut
(soal 2) Selesaikan setiap sistem persamaan berikut

Pembahasan

Nomor (1)

  • 2x – 3y = 12 (x 1)
  • 3x + y = 7 (x 3)
  • 2x – 3y = 12
  • 9x + 3y = 21
  • _______________+
  • 11x = 33
  • x = \frac {33} {11} = 3
  • Subtitusi x = 3 ke persamaan 2x – 3y = 12
  • 2 . 3 – 3y = 12
  • 6 – 3y = 12
  • 3y = 6 – 12 = -6
  • y = \frac {-6} {3} = -2
  • Jadi jawabannya: (3, -2)

Nomor (2)

  • 3x – 4y = 10 (x 2)
  • 5x – 8y = 22 (x 1)
  • 6x – 8y = 20
  • 5x – 8y = 22
  • ______________-
  • x = -2
  • Subtitusi x = -2 ker persamaan 3x – 4y = 10
  • 3 . (-2) – 4y = 10
  • -6 – 4y = 10
  • 4y = -6 – 10 = -16
  • y = \frac {-16} {4} = -4
  • Jadi jawabannya: (-2, -4)

Nomor (3)

  • -2x + 3y = -9 (x 2)
  • 4x – 5y = 15 (x 1)
  • -4x + 6y = -18
  • 4x – 5y = 15
  • ________________+
  • y = -3
  • Subtitusi y = -3 ke persamaan 4x – 5y = 15
  • 4x – 5 . (-3) = 15
  • 4x + 15 = 15
  • 4x = 15 – 15 = 0
  • x = \frac {0} {4} = 0
  • Jadi jawabannya: (0, -3)

(soal 3) Selesaikanlah setiap sistem persamaan berikut.

Selesaikanlah setiap sistem persamaan berikut

Pembahasan

Nomor (1)

  • 2x + 3y = 8 (x 3)
  • 3x – 4y = -5 (x 2)
  • 6x + 9y = 24
  • 6x – 8y = -10
  • ______________-
  • 17y = 34
  • y = \frac {34} {17} = 2
  • Subtitusi y = 2 ke persamaan 2x + 3y = 8
  • 2x + 3 . 2 = 8
  • 2x + 6 = 8
  • 2x = 8 – 6 = 2
  • x = \frac {2} {2} = 1
  • Jadi jawabannya: (1, 2)

Nomor (2)

  • 3x – 2y = 13 (x 4)
  • 4x + 5y = 2 (x 3)
  • 12x – 8y = 52
  • 12x + 15y = 6
  • ________________-
  • -23x = 46
  • x = \frac {46} {-23} = -2
  • Subtitusi x = -2 ke persamaan 3x – 2y = 13
  • 3 . (-2) – 2y = 13
  • -6 – 2y = 13
  • 2y = -6 – 13
  • 2y = – 19
  • y = \frac {-19} {2}
  • Jadi jawabannya: (-2, – \frac {19} {2})

Nomor (3)

  • 7x – 3y = -5 (x 5)
  • 6x – 5y = 3 (x 3)
  • 35x – 15y = -25
  • 18x – 15y = 9
  • _________________-
  • 17x = -34
  • x = \frac {-34} {17} = -2
  • Subtitusi x = -2 ke persamaan 7x – 3y = -5
  • 7 . (-2) – 3y = -5
  • -14 – 3y = -5
  • 3y = -14 + 5 = -9
  • y = \frac {-9} {3} = -3
  • Jadi jawabannya: (-2, -3)

Nomor (4)

  • 4x + 8y = 7 (x 6)
  • 6x + 5y = 7 (x 4)
  • 24x + 48y = 42
  • 24x + 20y = 28
  • __________________-
  • 28y = 14
  • y = \frac {14} {28} = \frac {1} {2}
  • Subtitusi y = \frac {1} {2} ke persamaan 4x + 8y = 7
  • 4x + 8 . \frac {1} {2} = 7
  • 4x + 4 = 7
  • 4x = 7 – 4 = 3
  • x = \frac {3} {4}
  • Jadi jawabannya: (\frac {1} {2}, \frac {3} {4})

(soal 4) Selesaikanlah sistem persamaan berikut menggunakan metode subtitusi.

Selesaikanlah sistem persamaan berikut menggunakan metode subtitusi.

Pembahasan

Nomor (1)

  • Subtitusi x = 3y + 1 ke persamaan x + 2y = 11
  • (3y + 1) + 2y = 11
  • 5y = 11 – 1
  • 5y = 10
  • y = \frac {10} {5} = 2
  • Subtitusi y = 2 ke persamaan x = 3y + 1
  • x = 3 . 2 + 1 = 6 + 1 = 7
  • Jadi jawabannya: (7, 2)

Nomor (2)

  • Subtitusi y = 7x – 2 ke persamaan y = 4x + 1
  • 7x – 2 = 4x + 1
  • 7x – 4x = 1 + 2
  • 3x = 3
  • x = \frac {3} {3} = 1
  • Subtitusi x = 1 ke persamaan y = 4x + 1
  • y = 4 . 1 + 1 = 5
  • Jadi jawabannya: (1, 5)

Nomor (3)

  • Subtitusi y = x – 3 ke persamaan x – 2y = 9
  • x – 2 (x – 3) = 9
  • x – 2x + 6 = 9
  • -x = 9 – 6
  • -x = 3
  • x = -3
  • Subtitusi x = -3 ke persamaan y = x – 3
  • y = -3 – 3 = -6
  • Jadi jawabannya: (-3, -6)

Nomor (4)

  • x – 3y = 5
  • x = 5 + 3y kemudian subtitusi ke persamaan 2x + y = 3
  • 2(5 + 3y) + y = 3
  • 10 + 6y + y = 3
  • 7y = 3 – 10
  • 7y = -7
  • y = \frac {-7} {7} = -1
  • Subtitusi y = -1 ke persamaan x – 3y = 5
  • x – 3 . (-1) = 5
  • x + 3 = 5
  • x = 5 – 3 = 2
  • Jadi jawabannya: (2, -1)

(soal 5) Selesaikanlah sistem persamaan berikut dengan metode yang tepat.

Selesaikanlah sistem persamaan berikut dengan metode yang tepat.

Pembahasan

Nomor (1) metode eliminasi dan subtitusi.

  • 3x + y = 7 (x 1)
  • x + 2y = 9 (x 3)
  • 3x + y = 7
  • 3x + 6y = 27
  • _______________-
  • -5y = -20
  • y = \frac {-20} {-5} = 4
  • Subtitusi y = 4 ke persamaan x + 2y = 9
  • x + 2 . 4 = 9
  • x + 8 = 9
  • x = 9 – 8 = 1
  • Jadi jawabannya: (1, 4)

Nomor (2) metode subtitusi

  • Subtitusi x = -y + 2 ke persamaan x + 3y = 3
  • (-y + 2) + 3y = 3
  • 2y = 3 – 2 = 1
  • y = \frac {1} {2}
  • Subtitusi y = \frac {1} {2} ke persamaan x = -y + 2
  • x = – \frac {1} {2} + 2 = \frac {3} {2}
  • Jadi jawabannya: (\frac {3} {2}, \frac {1} {2})

(soal 6) Selesaikanlah sistem persamaan berikut.

Selesaikanlah sistem persamaan berikut

Pembahasan

Nomor (1)

  • 2(x – y) – x = 8
  • 2x – 2y – x = 8
  • x – 2y = 8 … (pers. 1)
  • 5x – (3x – y) = 1
  • 5x – 3x + y = 1
  • 2x + y = 1
  • y = 1 – 2x … (pers 2)
  • Subtitusi y pers. 2 ke pers. 1
  • x – 2 (1 – 2x) = 8
  • x – 2 + 4x = 8
  • 5x = 8 + 2
  • 5x = 10
  • x = \frac {10} {5} = 2
  • Subtitusi x = 2 ke persamaan 1
  • 2 – 2y = 8
  • 2y = 2 – 8 = -6
  • y = \frac {-6} {2} = -3
  • Jadi jawaban: (2, -3)

Nomor (2)

  • 3(x + 2y) = 2(x – 3)
  • 3x + 6y = 2x – 6
  • 6y = 2x – 3x – 6
  • 6y = -x – 6 … (pers. 1)
  • Subtitusi y = 4 – x ke persamaan 1
  • 6(4 – x) = -x – 6
  • 24 – 6x = -x – 6
  • 24 + 6 = -x + 6x
  • 30 = 5x
  • x = \frac {30} {5} = 6
  • Subtitusi x = 6 ke persamaan y = 4 – x
  • y = 4 – 6 = -2
  • Jadi jawaban: (6, -2)

(soal 7) Selesaikanlah sistem persamaan berikut setelah kamu mengubah koefisien-koefisien variabel dalam bilangan bulat.

Selesaikanlah sistem persamaan berikut setelah kamu mengubah koefisien-koefisien variabel dalam bilangan bulat

Pembahasan

Nomor (1)

  • 0,2x + 0,3y = 0,5 (x 10)
  • 2x + 3y = 5 … (pers. 1)
  • x + 5y = -1 (x 2)
  • 2x + 10y = -2 (pers. 2)
  • Eliminasi x pada pers. 1 dan pers. 2
  • 2x + 3y = 5
  • 2x + 10y = -2
  • _______________-
  • -7y = 7
  • y = \frac {7} {-7} = -1
  • Subtitusi y = -1 ke pers . 2
  • x + 5y = -1
  • x + 5 . (-1) = -1
  • x – 5 = -1
  • x = -1 + 5 = 4
  • Jadi jawaban: (4, -1)

Nomor (2)

  • 8x – 3y = 9 … (pers. 1)
  • \frac {1} {6}x + \frac {1} {2} y = 2 (x 6)
  • x + 3y = 12 .. (pers. 2)
  • Eliminasi y pers. 1 dan pers. 2
  • 8x – 3y = 9
  • x + 3y = 12
  • _____________+
  • 9x = 21
  • x = \frac {21} {9} = \frac {7} {3}
  • Subtitusi x = \frac {7} {3} ke pers. 2
  • x + 3y = 12
  • 3y = 12 – x
  • 3y = 12 – \frac {7} {3}
  • 3y = \frac {36} {3}\frac {7} {3} = \frac {29} {3}
  • y = \frac {29} {9}
  • Jadi jawaban: (\frac {7} {3}, \frac {29} {9})

(soal 8) Selesaikanlah setiap sistem persamaan berikut.

Selesaikanlah setiap sistem persamaan berikut

Pembahasan

Nomor (1)

  • x – 3y = 4
  • x + 3y = 10
  • ______________-
  • -2y = -6
  • y = \frac {-6} {-2} = 3
  • Subtitusi y = 3 ke x – 3y = 4
  • x – 3 . 3 = 4
  • x – 9 = 4
  • x = 4 + 9 = 13
  • Jawaban: (13, 4)

Nomor (2)

  • 2x + 5y = -8 (x 2)
  • 4x + 10y = -16
  • 4x + 3y = 12
  • ________________-
  • 7y = -28
  • y = \frac {-28} {7} = 4
  • 2x + 5y = -8
  • 2x + 5 . 4 = -8
  • 2x + 20 = -8
  • 2x = -8 – 20 = -28
  • x = \frac {-28} {2} = -14
  • Jawaban: (-14, 4)

Nomor (3)

  • 2x – 3y = 7 (x 3)
  • 6x – 9y = 21 … (pers. 1)
  • 3x + 2y = 4 (x 2)
  • 6x + 4y = 8 … (pers. 2)
  • Eliminasi x pers. 1 dan pers. 2
  • 6x – 9y =21
  • 6x + 4y = 8
  • _____________-
  • -13y = 13
  • y = \frac {13} {-13} = -1
  • 2x – 3y = 7
  • 2x – 3 . (-1) = 7
  • 2x + 3 = 7
  • 2x = 7 – 3 = 4
  • x = \frac {4} {2} = 2
  • Jawaban: (2, -1)

Nomor (4)

  • 2x + y = -9
  • x = 3y – 1 (subtitusi ke pers di atas)
  • 2(3y – 1) + y = -9
  • 6y – 2 + y = -9
  • 7y = -9 + 2 = -7
  • y = \frac {-7} {7} = -1
  • x = 3y – 1 = 3 . (-1) – 1 = -4
  • Jawaban: (-4, -1)

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *